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Introduction to the SimCLR model

* SimCLR was first (SimCLR v1) introduced in February 2020
and was presented in the research paper titled ”A Simple

Framework for Contrastive Learning of Visual Representations”.
* An improved version (SimCLR v2) was released in June 2020.
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Motivation of SimCLR

—

. Agreement under transformations (Becker & Hinton 1992)

N\

. Handcrafted pretext tasks

> Relative path prediction (Doersch, 2015)
> Jigsaw puzzles (Noroozi and Favaro, 2016)
» Colorization (Zhang, 2016)

> Rotation prediction (Gidaris, 2018)

3. Contracstive visual representation learning

> A key concepts in SimCLR, dates back to (Hadsell 2006).
Learn representations by constrasting ”positive
pairs”against "negative pairs”

» Introduced a "memory bank”to store feature vectors for
contrasting (Wu 2018)

]
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Augmentation
T

I‘A

Imae x

Augmented Encoder Feature Projection Head
images . vector a(.)

» Data augmentation: x -> (xi, xj)

» Base encoder: f(.) -> extracts representation (average
pooling layer)

» Projection head. g(.) maps representation to the space
latent, where contrastive loss is applied.

» Contrastive loss function (NT Xent loss): xi including a
positive pair (xj,x;j). Aims to identify xj € x with k # i
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Training PipeLine - SimCLR Pseudocode

Data augmentaion

Feature extraction and
mapped to the latent
space using projection
head

Computer the
costracstive loss

Update the networks f(.)

and g(.) to minimize L.
Retain f(.) and discard

g(.)-

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, constant 7, structure of f, g, 7.
for sampled minibatch {ay. }_; do
forall ke {1...., N} do

draw two augmentation functions t ~ T, ¢/ ~T

# the first augmentation

Ty = t(zy)

hop 1 = f(&21)

zok-1 = g(hat-1)

# the second augmentation

#representation
# projection

By, =1'(ax)

hoy, = f(@ar) # representation

zok = g(har) # projection
end for

foralli e {1,....2N}andj € {1,...,2N} do

sij = 2] 2/ (il |2]1) # pairwise similarity
end for
define ((i,j) as ((i, j)=—log s exp(sii/7)

g 1 V) exp(sik /7)
L= S (02 ~1,2k) + ((2k, 2k—1)]
update networks f and g to minimize £
end for
return encoder network f(-), and throw away g(-)
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(b Crop and resize

1) Crop, resize (and flip) (d) Color distort, (drop) () Color distort, (jitter)

(1) Rotate {90, 180° 270} {g) Cutout (h} Gaussian noise

(1) Gaussian blur

(j) Sobel filtering
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Training PipeLine - Data Augmentation

> Data augmentation

defines predictive task

Composition of data
augmentation operations
is crucial for learning
good representations

Contrastive learning
needs stronger data
augmentation than
supervised learning

1st transformation
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Training PipeLine - Base Encoder
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Training PipeLine - Projection Head

70
> Non-linear projection
head improves the 60 I II II
. . ]
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Training PipeLine - N'T' Xent Loss

(+) Logistic loss:
L(y,y) = —ylog(y) — (1 —y) log(1 - §)
(4+) Margin loss:
£(y,D) = 5(y - D? + (1~ y) - max(0, m — D?)
(+) NT Xent loss:

exp(sim(zi, z))/7)

SN, Ly exp(sim(zi, zi) /7)

LiJ = —log

Slide 11/18 | 01/2025 | Institute of Applied Science and Technology | University of Information and Con



Training PipeLine - Batch Sizes

>

Benefits from larger batch sizes and more training steps
compared to supervised leanring.
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Training PipeLine - Linear Protocol Evaluation

Linear protocol evaluation is a common method to evaluate the
representations of a model
(+) Workflow:

> Add a classifier layer basic such as fully connected layer
(FC) or linear classifier

> Fine-tuning with labeled data
(+) Objectives:

> Evaluating the quality of the model’s representations
ensures that a good model will perform well even when
only a simple classifier layer is used
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Experimental Setup - Training Model Process

Pretext Task

feature maj p——»@—MLP‘ II LN’
eature map—o@—MLP‘ II LN

linear layers

Downstream Task

base encoder

fine_tune evaluation. Precision/Recall/F1
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Experimental Setup - Implementation Plan
(4) Task 01: Pretext Task

> S1: Data augmentation: Random crop resize, color
distortion, gaussian blur.

> S2: InceptionV3, InceptionResNetV2, Xception, ResNet50.
» S3: Output the projection head dimensionality 32/64/128.
» S4: Batch size 32/64/128, Epochs ?
» S5: Evaluation Linear Protocol (metrics)

(+) Task 02: Downstream Task

> S1: Choose the models with the best performance after
being evaluated in task 1, then fine-tuning these on labeled
dataset for classification task (5 class).

> S2: Evaluate the model’s performance using classification
metrics such as Precicion, Recall and F1-score.
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Results & Comparisons

(+) Datasets

> Pre-trained: 15703

» Evaluation Linear Protocol / Fine-tune: 3365
> Test after fine-tuned: 3366

Inceptionv3 15.000 3000 3000 128 72.5767.45
Inception ResNet V2 15.000 3000 3000 128 74.04/66.20
Xception 15.000 3000 3000 128 67.18/71.21
ResNet50 15.000 3000 3000 128 65.14
oy <@ = = z 9ac
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