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Introduction to the SimCLR model

* SimCLR was first (SimCLR v1) introduced in February 2020
and was presented in the research paper titled ”A Simple
Framework for Contrastive Learning of Visual Representations”.
* An improved version (SimCLR v2) was released in June 2020.

Problems
▶ Eliminates dependence on labeled data
▶ Leverages data augmentation effectively
▶ Flexible and adaptable
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Motivation of SimCLR

1. Agreement under transformations (Becker & Hinton 1992)
2. Handcrafted pretext tasks

▶ Relative path prediction (Doersch, 2015)
▶ Jigsaw puzzles (Noroozi and Favaro, 2016)
▶ Colorization (Zhang, 2016)
▶ Rotation prediction (Gidaris, 2018)

3. Contracstive visual representation learning
▶ A key concepts in SimCLR, dates back to (Hadsell 2006).

Learn representations by constrasting ”positive
pairs”against ”negative pairs”

▶ Introduced a ”memory bank”to store feature vectors for
contrasting (Wu 2018)
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Architecture

▶ Data augmentation: x -> (xi, xj)

▶ Base encoder: f(.) -> extracts representation (average
pooling layer)

▶ Projection head. g(.) maps representation to the space
latent, where contrastive loss is applied.

▶ Contrastive loss function (NT Xent loss): xk including a
positive pair (xi, xj). Aims to identify xj ∈ xk with k ̸= i

Slide 5/18 | 01/2025 | Institute of Applied Science and Technology | University of Information and Communication Technology



Training PipeLine - SimCLR Pseudocode

▶ Data augmentaion
▶ Feature extraction and

mapped to the latent
space using projection
head

▶ Computer the
costracstive loss

▶ Update the networks f(.)
and g(.) to minimize L.
Retain f(.) and discard
g(.).
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Traning PipeLine - Data Augmentation
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Training PipeLine - Data Augmentation

▶ Data augmentation
defines predictive task

▶ Composition of data
augmentation operations
is crucial for learning
good representations

▶ Contrastive learning
needs stronger data
augmentation than
supervised learning
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Training PipeLine - Base Encoder

▶ Unsupervised learning
benefits more from bigger
models than its
supervised counterpart.
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Training PipeLine - Projection Head

▶ Non-linear projection
head improves the
representations quality of
the layer before it: None
vs linear vs non-linear

▶ Choose the projection
head output
dimensionnality
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Training PipeLine - NT Xent Loss

(+) Logistic loss:

L(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ)

(+) Margin loss:

L(y,D) =
1

2
(y ·D2 + (1− y) ·max(0,m−D2)

(+) NT Xent loss:

Li,j = −log exp(sim(zi, zj)/τ)∑2N
k=1 1k̸=i exp(sim(zi, zk)/τ)
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Training PipeLine - Batch Sizes
▶ Benefits from larger batch sizes and more training steps

compared to supervised leanring.
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Training PipeLine - Linear Protocol Evaluation

Linear protocol evaluation is a common method to evaluate the
representations of a model
(+) Workflow:
▶ Add a classifier layer basic such as fully connected layer

(FC) or linear classifier
▶ Fine-tuning with labeled data

(+) Objectives:
▶ Evaluating the quality of the model’s representations

ensures that a good model will perform well even when
only a simple classifier layer is used
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Experimental Setup - Training Model Process
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Experimental Setup - Implementation Plan
(+) Task 01: Pretext Task
▶ S1: Data augmentation: Random crop resize, color

distortion, gaussian blur.
▶ S2: InceptionV3, InceptionResNetV2, Xception, ResNet50.
▶ S3: Output the projection head dimensionality 32/64/128.
▶ S4: Batch size 32/64/128, Epochs ?
▶ S5: Evaluation Linear Protocol (metrics)

(+) Task 02: Downstream Task
▶ S1: Choose the models with the best performance after

being evaluated in task 1, then fine-tuning these on labeled
dataset for classification task (5 class).

▶ S2: Evaluate the model’s performance using classification
metrics such as Precicion, Recall and F1-score.
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Results & Comparisons
(+) Datasets
▶ Pre-trained: 15703
▶ Evaluation Linear Protocol / Fine-tune: 3365
▶ Test after fine-tuned: 3366
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Thank you for your attention. I look forward to your
thoughts and feedback !
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