

The SimCLR Model

Nguyen Thai $\operatorname{Hoc}^{1,2}$

¹University of Information and Communication Technology, Thai Nguyen ²Institute of Applied Science and Technology, University of Information and Communication Technology, Thai Nguyen

Outlines

- 1. Introduction
- 2. Architecture
- 3. Training Pipeline
- 4. Experimental Setup
- 5. Results and Comparisons
- 6. References

(日) (同) (日) (日) (日)

Introduction to the SimCLR model

* SimCLR was first (SimCLR v1) introduced in February 2020 and was presented in the research paper titled "A Simple Framework for Contrastive Learning of Visual Representations".
* An improved version (SimCLR v2) was released in June 2020.

Problems

- Eliminates dependence on labeled data
- ▶ Leverages data augmentation effectively
- ▶ Flexible and adaptable

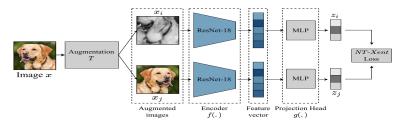
- 4 回 ト - 4 回 ト

Motivation of SimCLR

- 1. Agreement under transformations (Becker & Hinton 1992)
- 2. Handcrafted pretext tasks
 - ▶ Relative path prediction (Doersch, 2015)
 - ▶ Jigsaw puzzles (Noroozi and Favaro, 2016)
 - Colorization (Zhang, 2016)
 - ▶ Rotation prediction (Gidaris, 2018)
- 3. Contractive visual representation learning
 - A key concepts in SimCLR, dates back to (Hadsell 2006). Learn representations by constrasting "positive pairs" against "negative pairs"
 - Introduced a "memory bank" to store feature vectors for contrasting (Wu 2018)

イロト 不得下 イヨト イヨト 二日

Architecture



- \blacktriangleright Data augmentation: x -> (x_i,x_j)
- Base encoder: f(.) -> extracts representation (average pooling layer)
- Projection head. g(.) maps representation to the space latent, where contrastive loss is applied.
- ▶ Contrastive loss function (NT Xent loss): x_k including a positive pair (x_i, x_j) . Aims to identify $x_j \in x_k$ with $k \neq i$

Training PipeLine - SimCLR Pseudocode

- Data augmentaion
- Feature extraction and mapped to the latent space using projection head
- Computer the costracstive loss
- Update the networks f(.) and g(.) to minimize *L*. Retain f(.) and discard g(.).

Algorithm 1 SimCLR's main learning algorithm. **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ $h_{2k-1} = f(\tilde{x}_{2k-1})$ # representation $z_{2k-1} = g(h_{2k-1})$ # projection # the second augmentation $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $z_{2k} = q(h_{2k})$ # projection end for for all $i \in \{1, \dots, 2N\}$ and $j \in \{1, \dots, 2N\}$ do $s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for define $\ell(i, j)$ as $\ell(i, j) = -\log \frac{\exp(s_{i, j}/\tau)}{\sum_{i=1}^{2N} \frac{1}{1 + (i + j)} \exp(s_{i, k}/\tau)}$ $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ update networks f and q to minimize \mathcal{L} end for **return** encoder network $f(\cdot)$, and throw away $q(\cdot)$ ・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Traning PipeLine - Data Augmentation

(a) Original

(f) Rotate {90°, 180°, 270°}

(g) Cutout

(h) Gaussian noise

(i) Gaussian blur

(j) Sobel filtering

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Training PipeLine - Data Augmentation

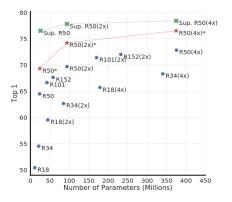
- Data augmentation defines predictive task
- Composition of data augmentation operations is crucial for learning good representations
- Contrastive learning needs stronger data augmentation than supervised learning

Crop	33.1	33.9	56.3	46.0	39.9	35.0	30.2	39.2	- 50
Cutout	32.2	25.6			26.5	25.2	22.4	29.4	
Color	55.8	35.5	18.8	21.0	11.4	16.5	20.8	25.7	- 40
Color Sobel Noise	46.2		20.9	4.0	9.3	6.2	4.2	18.8	- 30
Ist tra		25.8	7.5	7.6	9.8	9.8	9.6	15.5	- 20
Blur		25.2	16.6	5.8	9.7	2.6	6.7	14.5	
Rotate	30.0	22.5	20.7	4.3	9.7	6.5	2.6	13.8	- 10
	Clob	cutout	Color	sobel	Noise	Blur	Rotate	Average	_
2nd transformation									

< 同 > < 三 > < 三 >

Training PipeLine - Base Encoder

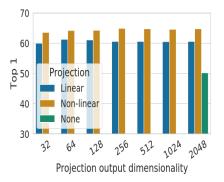
 Unsupervised learning benefits more from bigger models than its supervised counterpart.



- 4 回 ト - 4 回 ト

Training PipeLine - Projection Head

- Non-linear projection head improves the representations quality of the layer before it: None vs linear vs non-linear
- Choose the projection head output dimensionnality



Training PipeLine - NT Xent Loss

(+) Logistic loss:

$$L(y, \hat{y}) = -y \log(\hat{y}) - (1-y) \log(1-\hat{y})$$

(+) Margin loss:

$$\mathcal{L}(y,D) = \frac{1}{2}(y \cdot D^2 + (1-y) \cdot \max(0,m-D^2)$$

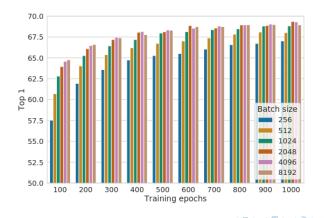
(+) NT Xent loss:

$$L_{i,j} = - \mathrm{log} \frac{\exp(\mathrm{sim}(z_i,z_j)/\tau)}{\sum_{k=1}^{2N} \mathbf{1}_{k \neq i} \exp(\mathrm{sim}(z_i,z_k)/\tau)}$$

イロト イヨト イヨト

Training PipeLine - Batch Sizes

 Benefits from larger batch sizes and more training steps compared to supervised learning.



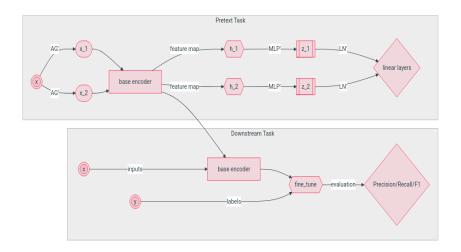
Training PipeLine - Linear Protocol Evaluation

Linear protocol evaluation is a common method to evaluate the representations of a model

- (+) Workflow:
 - Add a classifier layer basic such as fully connected layer (FC) or linear classifier
 - ▶ Fine-tuning with labeled data
- (+) Objectives:
 - Evaluating the quality of the model's representations ensures that a good model will perform well even when only a simple classifier layer is used

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Experimental Setup - Training Model Process



Slide 14/18 | 01/2025 | Institute of Applied Science and Technology | University of Information and Con

Experimental Setup - Implementation Plan

- (+) Task 01: Pretext Task
 - S1: Data augmentation: Random crop resize, color distortion, gaussian blur.
 - ▶ S2: InceptionV3, InceptionResNetV2, Xception, ResNet50.
 - ▶ S3: Output the projection head dimensionality 32/64/128.
 - S4: Batch size 32/64/128, Epochs?
 - ▶ S5: Evaluation Linear Protocol (metrics)
- (+) Task 02: Downstream Task
 - S1: Choose the models with the best performance after being evaluated in task 1, then fine-tuning these on labeled dataset for classification task (5 class).
 - S2: Evaluate the model's performance using classification metrics such as Precicion, Recall and F1-score.

Results & Comparisons

- (+) Datasets
 - \blacktriangleright Pre-trained: 15703
 - Evaluation Linear Protocol / Fine-tune: 3365
 - ▶ Test after fine-tuned: 3366

Name / Backbone	Unlabeled Data	Evaluation Linear Protocol	Fine-tune	Projection Head / Batch Size	F1 score
InceptionV3	15.000	3000	3000	128	72.57 / <mark>67.45</mark>
Inception ResNet V2	15.000	3000	3000	128	74.04 / <mark>66.20</mark>
Xception	15.000	3000	3000	128	67.18 / <mark>71.21</mark>
ResNet50	15.000	3000	3000	128	65.14

References

- (1) A Simple Framework for Contrastive Learning for Visual Representations
- (2) Big Self-Supervised Models are Strong Semi-Supervised Learners

Slide 17/18 | 01/2025 | Institute of Applied Science and Technology | University of Information and Con

(日) (同) (日) (日) (日)

Thank you for your attention. I look forward to your thoughts and feedback !

Slide 18/18 | 01/2025 | Institute of Applied Science and Technology | University of Information and Con

- 4 同 ト - 4 三 ト - 4 三 ト